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Security vulnerabilities have been continually disclosed and documented. For the effective understanding,

management, and mitigation of the fast-growing number of vulnerabilities, an important practice in docu-

menting vulnerabilities is to describe the key vulnerability aspects, such as vulnerability type, root cause,

affected product, impact, attacker type, and attack vector. In this article, we first investigate 133,639 vulnera-

bility reports in the Common Vulnerabilities and Exposures (CVE) database over the past 20 years. We

find that 56%, 85%, 38%, and 28% of CVEs miss vulnerability type, root cause, attack vector, and attacker type,

respectively. By comparing the differences of the latest updated CVE reports across different databases, we

observe that 1,476 missing key aspects in 1,320 CVE descriptions were augmented manually in the National

Vulnerability Database (NVD), which indicates that the vulnerability database maintainers try to complete

the vulnerability descriptions in practice to mitigate such a problem.

To help complete the missing information of key vulnerability aspects and reduce human efforts, we pro-

pose a neural-network-based approach called PMA to predict the missing key aspects of a vulnerability based

on its known aspects. We systematically explore the design space of the neural network models and empir-

ically identify the most effective model design in the scenario. Our ablation study reveals the prominent

correlations among vulnerability aspects when predicting. Trained with historical CVEs, our model achieves

88%, 71%, 61%, and 81% in F1 for predicting the missing vulnerability type, root cause, attacker type, and

attack vector of 8,623 “future” CVEs across 3 years, respectively. Furthermore, we validate the predicting

performance of key aspect augmentation of CVEs based on the manually augmented CVE data collected

from NVD, which confirms the practicality of our approach. We finally highlight that PMA has the ability

to reduce human efforts by recommending and augmenting missing key aspects for vulnerability databases,

and to facilitate other research works such as severity level prediction of CVEs based on the vulnerability

descriptions.
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1 INTRODUCTION

Security vulnerabilities can be exploited to damage system or information confidentiality, integrity,
and availability [17]. Significant human efforts have been made to document and manage publicly
known vulnerabilities. The core of these efforts is the Common Vulnerabilities and Exposures
(CVE) [39]. CVE is a list of entities—each reporting a publicly known vulnerability with a unique
identification number, a description, and at least one public reference of the initial announcement
of the vulnerability. At the time of this work, over 139,000 vulnerabilities have been recorded in
the CVE database. With the fast growth of vulnerabilities, there is also a increasing concern about
the information quality of vulnerability descriptions [15, 41].

Remarkably, the description of CVE is one of the most important and informative entities. Typi-
cally, a CVE is described by the key vulnerability aspects [29]. Figure 1 presents the description of
the CVE entry “CVE-2005-4676”. As highlighted in Figure 1, a high-quality CVE description should
have six key aspects of the vulnerability [21, 29], including vulnerability type (e.g., buffer overflow),
affected product (including vendor/version/component information, e.g., Andreas Huggel Exiv2 be-
fore 0.9), root cause (e.g., does not null terminate strings before calling sscanf), attacker type (e.g.,
remote attacker), impact (e.g., cause a denial of service–application crash), and attack vector (e.g.,
via images with crafted IPTC metadata).

Security experts take advantage of these key aspects of CVE descriptions for vulnerability un-
derstanding, management, and mitigation of fast-growing number of vulnerabilities. Specifically,
CVE descriptions are helpful for understanding and assessing the severity [23], exploitability [6],
and many other characteristics (e.g., compromise of system confidentiality, integrity, and avail-
ability) [19] of the vulnerabilities. It also infers the related library names of a given CVE with the
software composition analysis (SCA) [11, 63]. As vulnerabilities are often documented in multiple
databases, such as the CVE [39] curated by “the power of the crowd” and the National Vulner-
ability Database (NVD) [37] established by the U.S. government (i.e., NIST [44]), people can use
CVE descriptions to detecting the inconsistencies between different vulnerability databases [15].
Moreover, CVE descriptions establish and consolidate the traceability links across vulnerabilities,
exploits, and patches, such as the CVE-2018-26281 in the CVE, the EDB-ID 445532 in the ExploitDB,
and the patch commit in the GitHub repository. Those traceability links profit for localizing vul-
nerable functions in the source code [65] and for developing and deploying patches [8, 30]. Most
of these description-based studies heavily rely on the information contained in the vulnerability
descriptions.

However, one of the biggest challenges of performing vulnerability description-based analysis
is that there may not be sufficient information (incomplete key aspects) of a large part of CVEs ac-
cording to our preliminary investigation. For example, missing key aspects in the vulnerability de-
scriptions can affect the prediction of severity level of vulnerabilities (RQ5 in Section 4.6) and lead
to wrong CVSS scores [17]. Therefore, the main goal is to recommend and augment the missing
key aspects of vulnerability descriptions. Besides these description-based studies, vulnerabilities

1https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2628.
2https://www.exploit-db.com/exploits/44553.
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Fig. 1. An example of CVE description.

Fig. 2. Examples of CVEs that miss information.

are constantly being discovered and reported, the vulnerability discoverers may not know some
critical aspects of the vulnerability when submitting the report. Consequently, one of the goals of
our work is to help these people complete and submit their newly discovered vulnerabilities with
unified format.

Considering the mentioned importance of CVE descriptions, we first systematically inves-

tigate the information completeness of the CVE descriptions. We develop a rule-based
method3 to extract the six key aspects from the CVE descriptions. If certain aspect fails to be
extracted, we define this aspect as a missing aspect. To develop aspect extraction rules, we first
randomly sample 20% CVEs (27,130 in total) per year from January 1999 to August 2020. We man-
ually extract the aspects in the description of these 20% sampled CVEs. Based on such collected
aspects, we further develop regular expression patterns for aspect extraction. Then we apply our
aspect extraction rules to gain aspects on the rest of CVEs. We consider the extracted CVE aspects
are high-quality (>97% accuracy at the 95% confidence level and 5% error margin), by a sampling
method [50] on the the full of extracted CVE aspects.

After inspection of the presence or absence of the six key aspects in the description of these
136,639 CVEs, we find that almost all the CVEs (over 99%) have the affected products. This con-
forms to the common sense that the reporters must determine the affected product of a new CVE
before submitting. However, the other five key aspects can be absent (see Figure 2), although the
CVE Numbering Authority (CNA) defined quality checks to improve the quality of the vulner-
ability descriptions before publishing them. For instance, 94% of CVEs define the impact on what
the attacker gains by exploiting this vulnerability. Furthermore, many CVEs miss the other four
aspects (the more technical aspects)—vulnerability type, root cause, attacker type, and attack vector.

3https://github.com/pmaovr/Predicting-Missing-Aspects-of-Vulnerability-Reports.
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Table 1. Examples of Augmented Aspects in NVD

Aspect CVE-ID
Description

type
Descriptions

Vulnerability
type

CVE-2006-0795
Modified Absolute path traversal vulnerability in convert.cgi in Quirex 2.0.2...
Original Unspecified vulnerability in convert.cgi in Quirex 2.0.2...

Root
cause

CVE-2015-8768
Modified click/install.py in click does not require files in... which allows remote attackers...
Original install.py in click allows remote attackers...

Attacker
type

CVE-2010-2206
Modified Array index error in AcroForm.api... allows remote attackers to...
Original Array index error in AcroForm.api... allows attackers to...

Attack
vector

CVE-2010-0189
Modified ... installation of arbitrary programs via a crafted name for a download site.
Original ... installation of arbitrary programs via unknown vectors.

Specifically, 28% of CVEs skip attacker type, and 38% of CVEs ignore attack vector. We also observe
that only 58% of CVEs describe either vulnerability type or root cause, while the remaining 42%
describe neither of them. This is unreasonable because a CVE should describe either vulnerability

type or root cause according to the guideline of CVE key details [29].
Hence, our second task is to automatically recommend and augment the missing aspects in CVE

descriptions. According to our investigation, to improve the completeness of the CVE descriptions,
database maintainers try to manually augment more information such as vulnerability type, root

cause, attack vector, and attacker type through different ways, as shown in Table 1 (RQ4 in Sec-
tion 4.5). However, manual augmentation of missing aspects by vulnerability database maintain-
ers will take substantial human efforts in practice. Therefore, automated augmentation of missing
aspects for vulnerability descriptions is very practical and useful to reduce human efforts and
maintain high-quality vulnerability descriptions.

Unfortunately, the rule-based method will not work for this augmentation task because the
correlations among different vulnerability aspects and their combinations are complex, which is
difficult to summarize as a set of explicit rules (see the experiment results of aspect fusion and as-
pect ablation in Sections 4.2.3 and 4.3, respectively). So we adopt a neural-network-based method
called Prediction of Missing Aspect (PMA) which can directly learn the intricate relations across
different vulnerability aspects from the existing CVE descriptions instead of manual feature en-
gineering. We formulate this task as a multi-class text classification task—predict the label of a
certain missing aspect of a vulnerability based on its known aspects. To implement it, we first sys-
tematically explore the design space of the neural-network-based classifier, including input text
format and representation, model architecture, and network design.

To evaluate the effectiveness of PMA, (1) We build a “historical” dataset of 43,583 CVEs (till
September 2016) where each CVE contains at least four out of the six vulnerability aspects. In the
10-fold cross-validations on the historical dataset, the best classifier design achieves the prediction
performance 94%, 79%, 89%, and 70% for vulnerability type, root cause, attacker type, and attack

vector, respectively. (2) We also set ablation experiments to determine the most and least prominent
aspect or aspect combinations for predicting a particular missing aspect. Our results show that the
impact aspect has the greatest impact on the prediction of vulnerability type, while affected product

and vulnerability type have the greatest impact on the prediction of root cause, attacker type, and
attack vector. At the same time, root cause and attacker type have least impact on the prediction of
other aspects. (3) To confirm the usefulness of our aspect augmentation method, we build a “future”
dataset of 8,623 CVEs (from October 2016 to August 2020). Trained on the historical dataset, our
method achieves the prediction performance 88%, 71%, 61%, and 81% for predicting the missing
vulnerability type, root cause, attacker type, and attack vector on the future dataset, respectively.
(4) We finally demonstrate the practicability of PMA (in terms of description augmentation) on the
real updated CVEs collected from NVD.
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This article makes the following contributions:

• We are the first to investigate the aspect missing issue of CVEs. We analyze 27,130 CVEs
over the past 20 years to develop rules for extracting aspects from their descriptions. We
analyze the characteristics and missing severity of six vulnerability aspects.
• We design a machine learning-based approach (PMA) for predicting the missing key aspects

of CVEs. Our model systematically considers variations in input formats, word embeddings,
model architectures, and neural network designs.
• We conduct extensive experiments to demonstrate the effectiveness, predicting performance,

usefulness of our approach in terms of vulnerability description augmentation.
• We also conduct experiments to show that our method can improve the performance of

vulnerability severity level prediction, and can predict threshold scores more accurately.

Finally, we remark that PMA can be used to recommend and further help to complete missing
aspects in existing CVEs and help vulnerability discoverers submit more complete CVEs, poten-
tially enabling more research and analysis using vulnerability descriptions. We leave these topics
as our future work.

2 DETECTING MISSING KEY ASPECTS

In this section, we introduce the six key aspects for CVE descriptions, discuss how to extract these
key aspects, evaluate the quality of the extracted key aspects, and analyze the missing status of
different aspects in CVE descriptions.

2.1 Preliminaries of CVE Key Aspects

CVE suggests two description templates [29]: (1) [Vulnerability Type] in [Component] in [Ven-
dor][Product][Version] allows [Attacker Type] to [Impact] via [Attack Vector]; (2) [Component]
in [Vendor][Product][Version][Root Cause], which allows [Attacker Type] to [Impact] via [Attack
Vector]. These two templates identify six key aspects for describing CVEs, as explained below.

Vulnerability Type (Vul-Type) identifies an abstract software weakness for a CVE, which is usually
identified as an entry in Common Weakness Enumeration (CWE) [13]. When submitting a
new CVE request [14], the reporter must specify the vulnerability type. The request site provides
several common candidate software weaknesses for selection (see Table 3). If the relevant weakness
(e.g., PHP Remote File Inclusion (CWE-98)) is not in this list, the reporter can select “Other” or
“Unknown”, and may optionally mention the weakness in the description.

Root Cause is an error in program design, value or condition validation, and system or environment
configuration, which results in a CVE. SecurityFocus [51] abstracts the root causes of CVEs into
11 error classes (see Table 3). But when submitting a new CVE request, specifying root cause is not
enforced. The reporter may describe the root cause in free-form text, as shown in Figures 1 and 2.

Affected Product refers to [Component] in [Vendor][Product] [Version] information in the CVE
description. It identifies software component in certain version(s) of a software product that has
been affected by a CVE. As the examples in Figures 1 and 2 show, affected components can be
source code file, function, or executable. When submitting a new CVE request, the reporter must
provide affected product(s) and version(s), and product vendor(s).

Attacker Type describes the mechanism by which an attacker may exploit a CVE. The CVE request
site provides five mechanisms for selection: authenticated, local, remote, physical, and context
dependent. Attacker type is an optional field. That is, the reporters leave this field unspecified
or select other. But they may mention attacker type in the CVE description (see Figure 1 for an
example).

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 3, Article 49. Pub. date: April 2022.
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Impact indicates what the attacker gains by exploiting this vulnerability. The CVE request site
provides four common impacts for selection: code execution, information disclosure, denial of
service, escalation of privileges. Impact is also an optional field, which can be left unspecified.
But the reporter generally describes the impact in the CVE description (see Figures 1 and 2 for
examples).

Attack Vector describes the method of exploitation, for example, to exploit vulnerability, someone
must open a crafted JPEG file. Specifying attack vector is not enforced. It may be mentioned in the
CVE description (see Figures 1 and 2 for examples). We manually label attack vector descriptions
into five common types: via field, arguments or parameters, via some crafted data, by executing
the script, HTTP protocol correlation, call API.

When submitting a new CVE request, the reporter provides a free-form textual description of
the vulnerability, which may or may not cover all the six key aspects. The submission form
provides pre-defined options for vulnerability type, attacker type, and impact. But the reporter
may select “Other” if the pre-defined options are not appropriate for the reported vulnerability
or leave the options unspecified. As such, not all CVEs describe all six aspects (see Figure 2).

2.2 Aspect Detection in CVE Descriptions

To understand the missing of the six key aspects in CVE descriptions, we first need to extract
these aspects from the description text. To that end, we randomly sample 20% of the CVEs (27,130
CVEs in total) for each year from 1999 to 2020, and manually label the key aspects in the CVE
descriptions. We observe that 71% of CVE descriptions follow the suggested templates [29], such
as those in Figure 1 and Figure 2(a) and 2(b). Twenty-nine percent (29%) of CVE descriptions do not
follow the suggested templates, such as those in Figures 2(c) and 2(d). However, even for those non-
template-following CVE descriptions, the descriptions of CVE aspects still exhibit similar patterns.
Due to the input assistance of the CVE request website, we observe commonly used phrases or
their variants for vulnerability type, attacker type, and impact.

Based on our observation of the aspect-phrase and sentence patterns in CVE descriptions, we de-
velop a set of regular expression patterns to extract the six key aspects from CVE descriptions (see
the GitHub repository: https://github.com/pmaovr/Predicting-Missing-Aspects-of-Vulnerability-
Reports). First, based on an advantageous matching technique “Gazetteer” [34, 47], we build a
gazetteer (the gazetteer size is 3,685) commonly used for vulnerability type, root cause, impact,

attacker type, and attack vector , as well as a gazetteer for product and vendor names from CVE
Details. CVE Details extracts and displays the production, version, and vendor names of the vul-
nerabilities, which can be easily obtained. We also define sentence-level patterns that represent
the common appearance order of different aspects in CVE descriptions.

We adopt Stanford CoreNLP [35] to parse a CVE description and obtain POS tags of this sen-
tence. Some of the hard-to-identify aspects of the vulnerability descriptions (e.g., root cause) need
to match the phrasal verbs that precede the sentence. Next, we combine gazetteer matching and
POS pattern matching to decide the candidates of certain CVE aspects. We also use POS to exclude
some aspects that are obviously wrong. For example, if the affected products we extract start with
a phrasal verb, that aspect is likely to be wrong. Finally, we examine the candidates against the
two official description templates and other general sentence-level patterns (see the GitHub repos-
itory) in order to filter out false positive aspect candidates. We write code to determine whether
the semantic structure and keywords in the template are present in the vulnerability descriptions,
and use these templates to write regular expression code to carry out pattern matching on the vul-
nerability descriptions. For example, attacker type, impact, and attack vector often appear together
in the form of “allow [attacker type] to [impact] via [attack vector]” or “[attacker type] performs
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Table 2. Variations of the Extracted Aspect Descriptions

Aspect CVE-ID Descriptions

Vulnerability Type

CVE-2017-11507 cross-site scripting (XSS) vulnerability
CVE-2018-16481 XSS vulnerability
CVE-2018-10937 cross site scripting flaw

Root Cause

CVE-2008-1419 does not properly handle ...
CVE-2010-0027 does not properly process ...
CVE-2015-1992 improperly processes ...

Affected Product

CVE-2006-3500 The dynamic linker (dyld) in Apple ...
CVE-1999-0786 The dynamic linker in Solaris
CVE-2013-0977 dyld in Apple iOS before 6.1.3 and Apple TV ...

Impact

CVE-2011-4129 obtain sensitive information
CVE-2005-2436 obtain sensitive data
CVE-2002-0257 obtain information from other users

Attacker Type

CVE-2018-1000634 user with privilege
CVE-2018-1000084 low-privilege user
CVE-2016-9603 A privileged user/process

Attack Vector

CVE-2018-12581 use a crafted database name
CVE-2019-11768 a specially crafted database name can be used
CVE-2012-1190 via a crafted database name

[attack vector] in order to [impact]”. Meanwhile, “executing the script” can belong to either attack

vector or impact aspect, while it is exactly an attack vector when it appears in the sentence “By
executing the script ...”. Note that, some vulnerability descriptions will describe the name of the
vendor at the beginning and the product version number of the affected product at the end. We will
extract the descriptions of these two parts at the same time to stitch together a complete affected

product.

2.3 Accuracy of CVE Aspect Extraction

We apply the aspect detection method to the remaining 108,500 CVEs. We extract 41,003; 15,129;
92,132; 89,053; 73,134; and 67,188 instances of the vulnerability type, root cause, affected product,

impact, attacker type, and attack vector, respectively. Considering the large numbers of instances
to examine, we adopt a statistical sampling method [50] to evaluate the accuracy of the extracted
aspect instances. Specifically, we sample and examine the minimum number MIN of data instances.
MIN is determined by n0/(1 + (n0 − 1)/populationsize ) where n0 = (Z 2 ∗ 0.25)/e2, and Z is the
confidence level’s z-score and e is the error margin. In this work, we consider 5% error margin
at 95% confidence level. At this setting, we examine 384 extracted instances for each aspect. One
author labels the sampled instances, and the other author validates the results. The two authors
discuss to resolve the disagreements. The extraction accuracy is 97%, 96%, 96%, 98%, 99%, and
98% for the vulnerability type, root cause, affected product, impact, attacker type, and attack vector,
respectively. Table 2 shows some examples of the extracted aspect phrases. We can see that our
aspect extraction method is flexible and can handle the variations of aspect extraction.

2.4 Missing and Distribution of CVE Aspects

Based on the extracted CVE aspects, we analyze the missing key aspects in CVEs. By observing the
different severities of information missing for different aspects, we find that about 43.8% of CVEs

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 3, Article 49. Pub. date: April 2022.
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Table 3. Class Distribution of CVE Aspects

Vulnerability Type

Cross site scripting (CWE-79) 29.5% SQL injection (CWE-89) 17.8%
Buffer Overflow (CWE-119) 17.1% Directory Traversal (CWE-32) 8.9%

Cross-site request forgery (CWE-352) 7.1% PHP file inclusion (CWE-98) 5.7%
Use-after-free (CWE-416) 3.2% Integer overflow (CWE-680) 2.6%

Untrusted search path (CWE-426) 1.7% Format string (CWE-134) 1.6%
CRLF injection (CWE-93) 0.6% XML External Entity (CWE-661) 0.3%

Others 4.0%

Root Cause

Input Validation Error 51.7% Boundary Condition Error 24.5%
Failure to Handle Exceptional Conditions 11.7% Design Error 11.0%

Access Validation Error 0.7% Atomicity Error 0.1%
Race Condition Error 0.1% Serialization Error 0.1%
Configuration Error 0.1% Origin Validation Error 0.1%
Environment Error 0.1%

Attack Vector

Via field, arguments or parameter 51.7% Via some crafted data 17.1%
By executing the script 14.0% HTTP protocol correlation 4.4%

Call API 3.3% Others 8.0%

Attacker Type

Remote attacker 72.8% Local attacker 11.1%
Authenticated user 8.1% Context-dependent 2.9%

Physically proximate attacker 0.3% Others 4.7%

describe vulnerability type, about 15.2% of CVEs describe root cause, about 3% of CVEs describe
both vulnerability type and root cause, 62% of CVEs describe attack vector, and 72% of CVEs describe
attacker type. Meanwhile, almost all (over 99%) CVEs list affected product, and about 94% of CVEs
present impact. We also uncover that about 31% of CVEs miss one aspect, 39% miss two, and 28%
miss three or more aspects. Table 3 demonstrates the class distributions of the main extracted
aspects, which is obviously imbalanced with a long-tailed distribution. In addition, classes with
the frequencies < 0.1 are grouped as Others. Note that, we exclude affected product and impact

because they do not suffer from serious information missing.

3 AUGMENTING MISSING KEY ASPECTS

Motivated by the missing key aspects in CVE descriptions, we design a neural-network-based
approach called PMA for predicting the missing aspects based on the known aspects in the CVE
description. We first give an overview of our approach (Section 3.1) and then describe the design
of the neural-network classifier (Sections 3.2~3.4).

3.1 Approach Overview

We formulate the prediction task as a multi-class classification problem for each aspect. Consider-
ing the severity of the information missing (see Section 2.3), we predict four aspects: vulnerability

type, root cause, attacker type, and attack vector. Each aspect has a corresponding multi-class clas-
sifier, and the class labels for each aspect-specific classifier are summarized in Table 3.
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Fig. 3. Overview of PMA.

As shown in Figure 3, PMA consists of a training phase and a prediction phrase. Training phase
uses the historical CVE descriptions to train aspect-specific neural network classifiers. It first uses
the aspect extraction method in Section 2.2 to extract six CVE aspects from the historical CVE
descriptions. Then, we prepare the training data for each aspect t to be predicted. For each CVE
that contains the aspect t , a training instance is created with the class label of t (denoted as label (t ))
as the expected output and the description of rest of aspects r ∈ R (1 ≤ |R | ≤ 5) (denoted asdesc (r ))
as the input. From such training data, the neural network classifier is trained to extract syntactic
and semantic features from the input aspect descriptions and capture the intrinsic correlations
between these input features and the output class label.

At the prediction phrase, given an unseen CVE description, we first extract the CVE aspects
present in the description. For each missing aspect, the trained aspect-specific classifier takes as
input the aspects present in the description and predicts as output the most likely class label of
the missing aspect.

The neural network classifier consists of three layers: an input layer that represents the input
text in a vector representation (e.g., word embedding) (Section 3.2); a neural-network feature ex-
tractor that extracts syntactic and semantic features from the input text (Section 3.3); and an output
classifier that makes the prediction based on the extracted features (Section 3.4). Next, we describe
the design of these three layers in detail.

3.2 Input Text and Representation

The raw input into classifier is the textual description of CVE aspects, such as those sentence
fragments highlighted in Figures 1 and 2. In this work, we consider three formats of raw input
text: (1) the sequence of separate aspect descriptions in the original appearance order (denoted as
i-ao); (2) the sequence of separate aspect descriptions in a random order (denoted as i-ar); and
(3) the original CVE description containing all input aspects (denoted as i-fu). i-ar allows us to
investigate the impact of the appearance order of CVE aspects, and i-fu allows us to investigate
the impact of additional sentence parts in the original CVE description. Additional parts refer
mostly to the preposition, pronoun and/or determiner that connect separate aspect descriptions
into a more complete sentence.

For i-ao, we delete the prepositions and connectives between all aspects and the note informa-
tion in the vulnerability, and the only aspects were retained and spliced into a continuous word
sequence. The i-ar is transformed from i-ao, in this input format, the description of vulnerability
will be extracted, the order of aspects will be randomly scrambled, and the new word sequence
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Fig. 4. Two model architectures.

will be spliced. For i-fu, we use a complete description of vulnerability, and reserve prepositions,
connectives, note information, and other information. These word sequences are then converted
into word vector sequences.

We use word embeddings to further represent word into vector, which can capture rich syntac-
tic and semantic features of each word in a low-dimensional vector [27, 42, 60]. Both general word
embeddings (denoted as weд) and domain-specific word embeddings (denoted aswed ) are applied
in this work. For general word embeddings, we adopt pre-trained word embeddings on the cor-
pus of Google News from the official Word2Vec [20]. For domain-specific word embeddings, two
corpora are taken for pre-training: one is from CVE descriptions and the other is from the vulner-
ability report in SecurityFocus [51]. We set the vocabulary size as 50,000 to learn domain-specific
word embeddings by using continuous skip-gram model [36] (the Python implementation in Gen-
sim [46]). The output of word embedding is a word dictionary, each of which has a d-dimensional
vector. We set d at 300 as in existing studies [19, 23, 56].

The input text is represented into a N ×d matrixv (w1) ⊕v (w2) ⊕ · · · ⊕v (wN ), where N denotes
the number of words wi (1 ≤ i ≤ N ), ⊕ is vector concatenation, and v (wi ) returns the word
embedding of the word wi in the dictionary. We randomly initialize corresponding word vectors
to deal with these Out-of-Vocabulary (OOV) words [64]. In addition, we set an input aspect as an
empty string if the CVE does not contain this input aspect, in order to keep the model architecture
consistent.

3.3 Neural Network Feature Extractors

3.3.1 Model Architecture. As our input consists of separate CVE aspects, we design two model
architectures to investigate the effective mechanism for incorporating CVE aspects and capturing
their intrinsic correlations: early fusion versus late fusion. As shown in Figure 4, early fusion
architecture first concatenates the input matrix of each aspect into one input matrix, which is fed
into a single neural network to extract and fuse features from different aspects. In contrast, late
fusion architecture feeds the input matrix of each aspect into a neural network separately and
then fuse the output feature vector of the separate networks by a fully connected layer. All neural
networks share the same network configuration, but they will learn different weights in different
architectures. Both early fusion and late fusion are applicable to the input formats i-ao and i-ar.
But only early fusion is applicable to the input format i-fu, because i-fu merges the input CVE
aspects into a whole sentence.

3.3.2 Backbone Network. We consider two popular neural networks for text classification in
the literatures [22, 24, 26]: Convolutional Neural Network (CNN) and Bi-directional Long-

Short Term Memory (BiLSTM), which the former is superior when capturing important words
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Fig. 5. 1-layer CNN. Fig. 6. 1-layer Bi-LSTM with attention.

and phrases, and the latter is better at capturing longer-range dependencies in text. Then, we
implement six neural network model variants of both of them as follows:

1-Layer CNN. CNN is a mature neural network feature extractor. Compared with RNN, the win-
dow sliding of CNN has no sequential relationship at all, and different convolution kernels have
no previous interaction. Therefore, it has a very high degree of parallel freedom. Figure 5 presents
the 1-layer CNN model which mainly has convolution layers and 1-max pooling layers. The con-
volution layer applies M filters to the input matrix of word embeddings. A filter is a h × d matrix
where h is the window size and d is the word embedding dimension 300. Further, in this neural
network model, we use three different window sizes h = 1, 3, 5, which refers to the number of
consecutive words (e.g., n-gram). That is, the filters extract features from 1-grams, 3-grams, and 5-
grams, respectively. For each word window, a filter calculates a real value, and then feeds it into the
non-linear activation function ReLU [18]: ReLU (x ) = max (0,x ). This filter scans the input word
sequence with hyperparameter stride = 1 (zero-padding at both ends to allow the filter to extract
features from the beginning and the end of the input sentence), and generates a feature map of the
input sequence length. Next, a 1-max pooling is applied to to obtain the most significant feature
from this feature map. Note, we use M = 128 filters to learn complementary features from the same
word windows. That is, 1-layer CNN neural network model produces a 128-dimensional feature
vector for each window size. Finally, The feature vectors of all windows sizes are concatenated
into an output feature vector for later classifier.

2-Layers CNN. This is a deeper variant of the 1-layer CNN. Both 2-layers CNN and 1-layer CNN
have the same first CNN layer. But in 2-layer CNN, the three feature vectors generated by the first
CNN layer are directly sent into one more CNN layer (convolution and 1-max-pooling). And this
successive CNN layer adopts M (M = 128) filters with the window size h = 3, to reprocess the 128-
dimensional feature vector. So, after a series of convolution, ReLu activation and max-pooling, the
second CNN layer outputs three 128-dimensional feature vectors similarly and then concatenates
them into an output feature vector for the later classifier.

1-Layer B1LSTM. Bi-directional Long Short Term Networks, commonly referred to simply as
BiLSTM, are a specific type of RNN designed to avoid long-term dependency problems. In this
work, we can learn long-term dependency information about vulnerability descriptions. Our pro-

posed 1-layer BiLSTM model includes a forward LSTM
−−−→
lstmf network that reads the input from

w1 to wN , and a backward LSTM
←−−−
lstmb that reads from wN to w1:

−→
h i =

−−−→
lstmf (wi ), i ∈ [1,N ],
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←−
h i =

←−−−
lstmb (wi ), i ∈ [N , 1].

−→
h i and

←−
h i are forward and backward hidden vectors for word wi ,

respectively. Note that, both forward and backward LSTM have 192 LSTM cells, and other param-

eters of
−−−→
lstmf and

←−−−
lstmf will be learned during model training. We obtain the hidden vector hi

for wi via concatenating
−→
h i and

←−
h i , i.e., hi =

−→
h i ⊕

←−
h i (hi is 384-dimensional vector). Thus, we

gain BiLSTM output vector hi of the input wordwi , which encodes both preceding and succeeding
sentence context centered around wi . Finally, we concatenate the last hidden vectors h1 and hN

into an output feature vector for the classifier.

2-Layers BiLSTM. It is a deeper variant of 1-layer BiLSTM. Its first layer is just similar to a 1-layer
BiLSTM, while the output vector of the first BiLSTM layer is considered as input into the second
BiLSTM layer which also uses 192 LSTM cells for encoding. The last hidden vectors h1 and hN by
the second BiLSTM layer are concatenated into an output feature vector for the later classifier.

Attention layer for BiLSTM. The attention [59] is a technique that enables models to fo-
cus on important information and fully learn, has become a new research hotspot in recent
years. For both 1-layer BiLSTM and 2-layers BiLSTM, we can add an attention layer on top of
the last BiLSTM layer to weight the importance of words. Therefore, we construct the 1-layer
BiLSTM+Attention and 2-layers BiLSTM+Attention. We only give the 1-layer BiLSTM+Attention
in Figure 6 due to space limitation. The new attention layer calculates the word attention weight
αi = exp((ui )Tuw )/

∑
i exp((ui )Tuw ) where ui = tanh(Wwhi +bw ). Its input is the output hi of the

BiLSTM layer. Specifically, hi is first fed into a one-layer feed-forward neural network to get ui

as a hidden representation. AndWw and bw are learnable parameters of the attention layer. Then,
the importance of word wi , also the normalized importance weight αi , is measured by calculate
the similarity of ui with a word-level context vector uw (randomly initialized and learned during
training) through a softmax function. After getting the weighted sum (output related to both Bi-
LSTM layer and attention layer):

∑n
i=1 αihi , we can obtain the final output feature vector for later

classifier.

3.4 Predicting Missing Aspects of CVEs

Since the output of our model is a mutually exclusive category and only one category can be se-
lected, the softmax function is used in this article to calculate the original output value of the
network. Given the output feature vector F by each neural-network feature extractor, a softmax
classifier predicts the probability distribution ŷ over the m class labels of a particular CVE as-
pect, i.e., ŷ = so f tmax (WF + b), where ŷ is the vector of prediction probabilities over the m
class labels, and W and b are the learnable parameters of the classifier. Meanwhile, the all learn-
able parameters in each neural-network feature extractor and the softmax classifier are trained
to minimize the cross-entropy loss between the predicted labels and the ground-truth labels:
L(ŷ,y) = −∑K

i=1

∑m
j=1 yi j log(ŷi j ), where K denotes the number of training samples. yi j is the

ground-truth label of the jth class (1 for ground-truth class, 0 otherwise) for the ith training ex-
ample, and ŷi j is the predicted probability of the jth class for the ith training example. In addition,
the loss gradient is back-propagated to update all learnable parameters of both neural networks
and classifier.

4 EXPERIMENTS

In this section, we conduct a series of experiments to investigate and answer to the following five
research questions:

• RQ1: Design of neural network classifier. How do different input formats, word embed-
dings, model architectures, and neural network designs affect the prediction performance?
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Table 4. Aspect-specific CVE Datasets

To-be-predicted aspect Vul-Type Root cause Attack vector Attacker type

Size 36,103 20,813 35,289 43,330

% with vulnerability type 100% 61% 63% 66%
% with root cause 38% 100% 39% 37%

% with attack vector 75% 72% 100% 78%
% with attacker type 86% 86% 92% 100%

• RQ2: Ablation study. What is the most or least prominent aspect or aspect combination
for predicting a specific aspect?
• RQ3: Prediction on future CVEs. How well can our approach predict key aspects of CVEs

published after the training CVEs?
• RQ4: Prediction on updated CVEs in NVD. How well can our approach predict key as-

pects of the updated CVEs collected from NVD compared with the manually augmented
descriptions?
• RQ5: Prediction on severity level of vulnerabilities. How does our approach contribute

to other applications based on the descriptions of CVEs (e.g., vulnerability severity level
prediction)?

4.1 Experiment Setup

We describe the CVE dataset used in our experiments, our model training setting, and the perfor-
mance evaluation metrics.

4.1.1 CVE Dataset. CVE list can be downloaded from the official CVE website [39]. In this
article, we download the CVE list that contains 136,639 CVEs from January 1999 to August 2020.
We use the aspect extraction method in Section 2.2 to extract CVE aspects from these CVEs. Our
evaluation in Section 2.3 confirms the high accuracy of the extracted CVE aspects.

To evaluate our prediction method, we collect 52,306 CVEs whose descriptions contain at least
four aspects. As almost all CVEs contain affected product and impact aspects (see Section 2.3),
which means the CVEs in the dataset contain at least two of the other four aspects. The reason is
that too little information of the known aspects will have an impact on the prediction of unknown
aspects, which is also not conducive to the exploration of the correlation between various aspects
of CVEs. We regard one aspect as the “missing” aspect and the rest as “known” aspects for pre-
diction. This guarantees that we have sufficient data to study aspect fusion and ablation. For each
to-be-predicted aspect (vulnerability type, root cause, attacker type, or attack vector), we build an
aspect-specific dataset for classifier training and testing from these 52,306 CVEs according to the
method in Section 3.1. Table 4 summarizes the information of the four aspect-specific datasets. For
a specific to-be-predicted aspect (e.g., vulnerability type), the other three aspects (e.g., root cause,

attacker type, or attack vector) of the CVEs used as input may also missing, except affected product
and impact, which is a real situation of the CVE description.

4.1.2 Model Training. We implement the proposed neural network classifier in TensorFlow [1].
Each To-be-predicted aspect has its own classifier. As discussed in Section 3, we have different
choices for input format, word embedding, model architecture and network design when imple-
menting a classifier. All the classifiers are trained in the same setting. Specifically, we train each
model for 256 iterations with a batch size of 128, set learning rate at 0.001, and use Adam [32] as
the optimizer. All experiments run on a NVIDIA Tesla M40 GPU machine, and the video memory
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size is 24 GB. The CPU is Intel(R) Xeon(R) Gold 5115 CPU and the total memory of the machine is
65 GB.

4.1.3 Evaluation Metrics. The multi-class classification results can be represented in a m ×m
confusion matrix M , wherem is the number of class labels (see Table 3). We use Precision (Pre), Re-
call (Re), and F1-score (F1) to evaluate the effectiveness of multi-class classification [53, 55, 57, 62].
Precision for a label Lj of an aspectA represents the proportion of the CVEs whose missing aspect
A is correctly predicted as Lj among all CVEs whose missing aspect A is predicted as Lj . Recall
for a label Li of an aspect A is the proportion of the CVEs whose missing aspect A is correctly
predicted as Li compared with the number of ground-truth CVEs whose missing aspect A is actu-
ally Li . F-score is the harmonic average of the precision and recall. The overall performance of a
classifier is the weighted average of the evaluation metrics of each class label.

4.2 Design of Neural Network Classifier (RQ1)

4.2.1 Motivation. The design of our neural network classifier considers three input formats
(i-ao: separate CVE aspects in the original order appearing in CVE descriptions, i-ar: separate
CVE aspects in random order, or i-fu: original CVE descriptions), three word embeddings (Google
News [20], SecurityFocus [51], or CVE-specific [39]), two model architecture (early aspect fusion
or late aspect fusion), and six specific neural network design (CNN or BiLSTM, 1-layer, or 2-layers,
BiLSTM with/without attention layer). We want to investigate the impact of these design options
on the prediction performance and identify the most effective design of neural network classifier.

4.2.2 Approach. We conduct four experiments to evaluate the impact of input format, word
embedding, model architecture, and network design, respectively. For the experiments on one di-
mension, we use the most effective options for the other three dimensions. Specifically, (1) for input
format experiments, we use CVE-specific word embeddings, early fusion architecture, and 1-layer
CNN; (2) For word-embedding experiments, we use separate CVE aspects in original order, early
fusion architecture, and 1-layer CNN; (3) For model architecture experiments, we use separate CVE
aspects in original order, CVE-specific word embeddings, and 1-layer CNN; and (4) For network
design experiments, we use separate CVE aspects in original order, CVE-specific word embeddings,
and early fusion architecture. Han et al. [23] pointed out in their study of a vulnerability severity
level prediction task that the window size of 1, 3, and 5 could best capture the information char-
acteristics of CVE vulnerabilities. Therefore, we also adopt the same experimental setting in this
RQ. Domain-specific word embeddings use vulnerability descriptions in CVE and SecurityFocus
directly as word vector training input, which contains a large number of vocabulary in the field
of software security. The vocabulary sizes of CVE and SecurityFocus are about 62,000 and 56,000,
respectively. This experiment setting helps to reduce the large number of experiments by the full
Cartesian product combination of the design options, and also facilitate the analysis of each design
dimension while fixing the other three dimensions. To ensure the reliability of our experiments,
we perform 10-fold cross validation in all the experiments. For each fold, we use 80%, 10%, and 10%
of data for model training, hyperparameter optimization, and testing, respectively. We conduct
Wilcoxon signed-rank test [54] on F1-score between different experiment settings. p-value < 0.05
is considered statistically significant (marked by * in the results tables).

4.2.3 Results. Input Formats. As shown in Table 5, the three input formats do not obviously af-
fect the prediction of the four CVE aspects, with only 0.002~0.009 difference in F1 across the three
input formats. The only exception is the prediction of root cause by separate aspects in random
order (i-ar), but the difference in F1 is not very large either. This suggests that the phrase-level
information in the CVE aspects alone can support reliable prediction. The presence or absence
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Table 5. Impact of Input Formats

Vul-Type Root Casue Attack Vector Attacker Type

Pre
i-ao 0.945 0.779 0.708 0.884
i-ar 0.943 0.746 0.701 0.882
i-fu 0.946 0.783 0.703 0.888

Re
i-ao 0.945 0.793 0.716 0.897
i-ar 0.945 0.770 0.710 0.892
i-fu 0.946 0.796 0.717 0.899

F1
i-ao 0.943 0.780 0.704 0.885
i-ar 0.943 0.745 0.699 0.880
i-fu 0.946 0.788 0.706 0.889

Table 6. Impact of Word Embeddings

Vul-Type Root Cause Attack Vector Attacker Type

Pre
CVE 0.946 0.783 0.703 0.888

SecurityFocus 0.942 0.779 0.701 0.883
*Google news 0.932 0.759 0.687 0.869

Re
CVE 0.946 0.796 0.717 0.899

SecurityFocus 0.944 0.792 0.716 0.894
*Google news 0.935 0.784 0.688 0.885

F1
CVE 0.946 0.788 0.706 0.889

SecurityFocus 0.942 0.783 0.703 0.883
*Google news 0.933 0.761 0.687 0.871

of the additional information (mostly prepositions, pronouns, determiner) that connect CVE as-
pects in the original CVE descriptions does not significantly affect the prediction. Furthermore,
the prediction is not sensitive to the appearance order of different aspects in the CVE descriptions.
Therefore, we use separate aspects in the original appearance order (i-ao) as the default option.

General versus Domain-Specific Word Embeddings. Table 6 shows that domain-specific word embed-
dings (CVE and SecurityFocus) support more accurate prediction in all four aspects than general
word embeddings (Google News). The differences are statistically significant in F1. However, the
two domain-specific word embeddings have marginal differences. This result can be attributed
to two reasons. First, CVE and SecurityFocus use text training word vectors in the field of soft-
ware security, in which the words contain a lot of professional terms, names of software and its
components, and the like. Domain-specific word embeddings learn meaningful embeddings for
domain-specific terms (e.g., CRLF, XSS, and DoS), which may be regarded as out-of-vocabulary
words and not semantically represented by word vectors in general word embeddings. Second, the
size of domain-specific vocabularies is around 60,000, and although the general vocabularies are
large, they are rarely used in vulnerability descriptions. Domain-specific corpora allow the learn-
ing of “purer” word embeddings highly relevant to a particular domain, while the word embed-
dings learned from general text may embed some unnecessary “noise” irrelevant to the particular
domain.

Early Fusion versus Late Fusion. Table 7 shows that early fusion architecture performs better than
late fusion architecture (statistically significant for all evaluation metrics). This suggests that using
a single network to extract and fuse features directly from all input CVE aspects is much more
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Table 7. Impact of Model Architectures

Vul-Type Root Cause Attack Vector Attacker Type

Pre
Early Fusion 0.946 0.783 0.703 0.888
*Late Fusion 0.921 0.751 0.671 0.844

Re
Early Fusion 0.946 0.796 0.717 0.899
*Late Fusion 0.927 0.770 0.680 0.872

F1
Early Fusion 0.946 0.788 0.706 0.889
*Late Fusion 0.923 0.755 0.669 0.850

Table 8. Impact of Neural Network Designs

Vul-Type Root Cause Attack Vector Attacker Type

Pre

1-L CNN 0.946 0.783 0.703 0.888
2-L CNN 0.933 0.765 0.673 0.852

1-L BiLSTM 0.939 0.761 0.682 0.867
2-L BiLSTM 0.939 0.770 0.688 0.870

1-L BiLSTM+Attention 0.941 0.769 0.690 0.873
2-L BiLSTM+Attention 0.943 0.778 0.692 0.876

Re

1-L CNN 0.946 0.796 0.717 0.899
2-L CNN 0.935 0.775 0.701 0.878

1-L BiLSTM 0.938 0.778 0.706 0.882
2-L BiLSTM 0.941 0.780 0.703 0.883

1-L BiLSTM+Attention 0.943 0.778 0.713 0.887
2-L BiLSTM+Attention 0.945 0.792 0.714 0.889

F1

1-L CNN 0.946 0.788 0.706 0.889
2-L CNN 0.932 0.768 0.677 0.859

1-L BiLSTM 0.938 0.765 0.684 0.871
2-L BiLSTM 0.940 0.770 0.683 0.874

1-L BiLSTM+Attention 0.940 0.770 0.692 0.873
2-L BiLSTM+Attention 0.943 0.778 0.694 0.878

effective than extracting features from each CVE aspect separately and only fusing the features of
different aspects at the end. In addition, the training time of the early fusion model is shorter than
that of the late fusion model, in which the training time of the early fusion model is about 16 hours
and the training time of the late fusion model is around 33 hours in our experiments. Therefore,
we use early aspect fusion as the default option.

Neural Network Variants. Table 8 presents our experimental results on the six variants of neural net-
work feature extractor. We can see that 1-layer CNN outperforms the other five variants. So we use
1-layer CNN as the baseline to analyze the performance of the other five variants. Compared with 1-
layer CNN, 2-layer CNN has worse but statistically non-significant performance for predicting vul-
nerability type and attacker vector, but has statistically significant worse performance for predict-
ing root cause and attacker type. In addition, the training time of the 1-layer BiLSTM model is the
shortest (about 15 hours), followed by the 1-layer CNN model, the training speed of 2-layers CNN is
the slowest among the six neural network designs (about 23 hours). This suggests that deeper CNN
is less appropriate than 1-layer CNN in our text classification task. The performance of the four
BiLSTM networks are very close. Neither deeper BiLSTM nor attention mechanism statistically
significantly improve the prediction performance. 1-layer CNN has better performance than
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Table 9. Ablation Results for Predicting Vulnerability Type

Ablated aspect Root cause Affected product Impact Attacker type Attack vector

Pre 0.943 0.925 0.821 0.939 0.888
Re 0.943 0.927 0.822 0.941 0.896
F1 0.943 0.925 0.821 0.939 0.890

2-layers BiLSTM with attention (the overall best BiLSTM performer). Although the performance
differences are not large, the differences in F1 are statistically significant for predicting all four
CVE aspects. This result suggests that using CNN to extract important words/phrase features fits
better for our text classification task than using LSTM to learn long-range sentence features.

Answer to RQ1. According to our experiments on input formats, word embeddings, model
architectures, and network designs, the most effective design of the classifier takes as input
separate CVE aspects in original order, uses CVE-specific word embeddings to represent input
text, and adopts early-fusion architecture and 1-layer CNN as feature extractor.

4.3 Ablation Study (RQ2)

4.3.1 Motivation. As shown in Table 4, it is unrealistic to assume that all other five CVE aspects
are available for predicting a particular aspect. In this RQ, we want to investigate the impact of
certain CVE aspects unavailable as input on the accuracy of predicting a particular aspect. This
study has two important goals. First, it identifies stronger correlations (if any) among some CVE
aspects than others. Second, it identifies the minimum subset of known aspects required for making
reliable prediction of a particular aspect. This also help us to understand the practicality of PMA.

4.3.2 Approach. For a particular aspect, we conduct five experiments in this section. In each
experiment, we ablate one of the other five aspects in the aspect-specific dataset, which produces
an ablation dataset without the ablated aspect. For example, for vulnerability type, we obtain five
datasets without root cause, affected product, impact, attacker type, or attack vector for the five ab-
lation experiments, respectively. Although the experiments in RQ1/RQ2/RQ3/RQ4 do not assume
the availability of all five aspects, the ablation of one aspect in this RQ means that we completely
ignore this ablated aspect as known aspect for model input, even the CVEs describe this ablated
aspect. We use the most effective classifier design identified in RQ1, and train and test the classifier
on each ablation dataset. We also perform 10-fold cross-validation in all these experiments.

4.3.3 Results. Tables 9~12 show the results of our ablation study. We compare the performance
metrics with those by 1-layer CNN in Table 8. As shown in Table 9, for predicting vulnerability

type, ablating impact results in the most significant drop (12.5%, 0.821 vs. 0.946) in F1, followed
by ablating attack vector (5.6% drop in F1, 0.890 vs. 0.946). In contrast, ablating attacker type and
affected product have a less significant impact, with 0.7% and 2.1% drop in F1, respectively. Ablating
root cause almost has no impact on predicting vulnerability type. As we discussed in Section 2.3,
over 94% of CVEs describe impact aspect. Therefore, our approach will not actually suffer from
the performance degradation due to the unavailability of impact as input in practice. Although
unavailable attack vector as input aspect affects the prediction of vulnerability type, our approach
can still achieve high accuracy (0.89 in F1).

As shown in Table 12, for predicting attack vector, ablating affected product has the most signif-
icant impact, resulting in 13.4% drop in F1 (0.572 vs. 0.706). However, as almost all CVEs describe
affected product, our approach will not actually suffer from the performance degradation due to the
unavailability of affected product as input. Ablating the other four aspects results in much smaller
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Table 10. Ablation Results for Predicting Root Cause

Ablated aspect Vul-Type Affected product Impact Attacker type Attack vector

Pre 0.740 0.734 0.739 0.781 0.780
Re 0.751 0.741 0.755 0.793 0.795
F1 0.745 0.730 0.736 0.785 0.784

Table 11. Ablation Results for Predicting Attacker Type

Ablated aspect Vul-Type Root cause Affected product Impact Attack vector

Pre 0.852 0.873 0.850 0.883 0.864
Re 0.876 0.892 0.874 0.895 0.871
F1 0.861 0.878 0.847 0.881 0.863

Table 12. Ablation Results for Predicting Attack Vector

Ablated aspect Vul-Type Root cause Affected product Impact Attacker type

Pre 0.659 0.696 0.568 0.680 0.670
Re 0.693 0.701 0.601 0.700 0.674
F1 0.665 0.695 0.572 0.683 0.669

drops (about 1.1%~4.1%) in F1. Among these four aspects, vulnerability type and attacker type have
stronger correlations with attack vector than impact and root cause.

As shown in Tables 10 and 11, there are no prominent aspect for predicting root cause and
attacker type as impact for vulnerability type and affected product for attack vector. Specifically, for
predicting root cause, ablating vulnerability type, affected product, or impact has relatively larger
impact (about 5% drop in F1), compared with about 0.4% drop in F1 by ablating attacker type and
attack vector. For predicting attacker type, ablating affected product results in relative larger drop
in F1 (4.2%) than ablating the other four aspects.

Answer to RQ2. Our ablation study shows that omitting impact and affected product have a
larger impact on predicting vulnerability type and attack vector compared to omitting other
aspects (root cause and attacker type).

4.4 Prediction on Future CVEs (RQ3)

4.4.1 Motivation. Security vulnerabilities are constantly being discovered and reported. The
future vulnerabilities may differ from current vulnerabilities. The vulnerability discoverers may
not know some critical aspects of the vulnerability when submitting the report. And one of the
goals of our work is to help these people submit their newly discovered vulnerabilities and to help
the CVE authorities complete their newly submitted vulnerability descriptions. To test whether
our work can help submit vulnerability reports, we need to make predictions about future CVEs.
In this RQ, we want to investigate if our model trained with historical CVEs can effectively predict
the missing aspects of future CVEs.

4.4.2 Approach. We construct a “future” dataset of 8,623 CVEs (from October 2016 to August
2020). 61%, 91%, 47%, and 49% of these CVEs miss vulnerability type, root cause, attack vector, and
attacker type, respectively. 25% of these CVEs miss one aspect, and 75% miss two or more aspects.
We train the model with our dataset of historical CVEs (Section 4.1.1), and use the trained model
to predict the missing aspects in the future dataset. The experiment setting is different from the
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Table 13. Prediction Performance on Future CVEs

Vul-Type Root Cause Attack Vector Attacker Type

Pre

1-L CNN 0.891 0.717 0.621 0.820
2-L CNN 0.881 0.711 0.600 0.802

1-L BiLSTM 0.880 0.712 0.605 0.809
2-L BiLSTM 0.857 0.711 0.609 0.805

1-L BiLSTM+Attention 0.861 0.714 0.610 0.813
2-L BiLSTM+Attention 0.873 0.715 0.615 0.816

Re

1-L CNN 0.889 0.717 0.623 0.825
2-L CNN 0.880 0.710 0.603 0.803

1-L BiLSTM 0.861 0.710 0.610 0.809
2-L BiLSTM 0.863 0.700 0.611 0.809

1-L BiLSTM+Attention 0.867 0.715 0.619 0.817
2-L BiLSTM+Attention 0.870 0.713 0.619 0.818

F1

1-L CNN 0.880 0.714 0.611 0.814
2-L CNN 0.850 0.702 0.589 0.780

1-L BiLSTM 0.857 0.705 0.596 0.792
2-L BiLSTM 0.859 0.702 0.599 0.799

1-L BiLSTM+Attention 0.862 0.710 0.605 0.815
2-L BiLSTM+Attention 0.869 0.711 0.607 0.812

training/testing splitting of the historical dataset, because it enforces the time dimension of the
CVE data. We use the same network designs and model configurations as in the previous section
(Section 4.4.2).

4.4.3 Results. As shown in Table 13, similar to the prediction performance on historical CVEs
(see Table 8), the performance of six model variants are close. Overall, 1-L CNN has slightly bet-
ter performance, which achieves 0.88, 0.71, 0.61, and 0.81 in F1 for predicting vulnerability type,

root cause, attack vector, and attacker type, respectively. Compared with the F1s of 1-L CNN on
historical CVEs, the F1s on the “future” CVE drops 6.6%, 7.4%, 9.5%, and 7.5% for vulnerability type,

root cause, attack vector, and attacker type, respectively. These performance drops are acceptable,
considering the strict historical-future evaluation setting. It is very likely that new vulnerability
information emerges over time, which has never been exposed in the historical CVEs. For rela-
tively stable vulnerability type and attacker type, the prediction is still highly accurate. However,
for attack vector which is usually product-specific, the model cannot generalize well, based on the
information learned from historical CVEs.

Answer to RQ3. From the results, we find that the unseen vulnerability information in the
future CVEs moderately degrades the prediction performance for the model trained with his-
torical CVEs. However, the model can still relatively accurately predict the missing vulnerability

type, attacker type, and root cause of future CVEs.

4.5 Predict on Updated CVEs in NVD (RQ4)

4.5.1 Motivation. Many CVEs in NVD database are marked as “MODIFIED”, which indicates
that the corresponding CVE descriptions have been modified and updated by database maintainers.
By comparing the differences between “MODIFIED” version and the corresponding “ANALYSE”

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 3, Article 49. Pub. date: April 2022.



49:20 H. Guo et al.

version4 through our key aspect detection method, we find that there are some missing key aspects
in CVEs that were augmented after being manually analyzed by NVD maintainers. We use the
augmented key aspects as ground-truth to evaluate the predicting performance of our approach.
In this section, we aim to explore whether our model can effectively predict these key aspects of
CVEs that were later augmented by NVD in practice.

4.5.2 Approach. We first apply our aspect detection method used in PMA to the descriptions
of CVEs that are marked as “MODIFIED” and “ANALYSE” in the NVD database. According to
the detection results, we obtain 1,320 CVE descriptions in total with 1,476 key aspects that are
manually augmented by the NVD maintainers in practice. In detail, there are 421, 279, 317, and 459
missing key aspects for vulnerability type, root cause, attack vector, and attacker type, respectively
that have been augmented (Examples in Table 1) according to the aspect detecting results. Besides
the updates on key aspects, many other “MODIFIED” versions have different changes such as
augmenting new types of affected product for CVE such as CVE-2007-4324 and CVE-2015-8768.5

We do not take them into the following experiments in this section.
Note that, these two labels (i.e., “MODIFIED” and “ANALYSE”) only maintain the latest two

versions of CVE descriptions instead of all historical modified description versions; therefore, we
cannot access to all historical records of description changes to key aspects, which means many
historical revisions of CVE descriptions cannot be inferred by comparing the publicly available
“MODIFIED” and “ANALYSIS” versions. Additionally, CVE descriptions will be updated over a long
period of time (e.g., over ten years for CVE-2008-02346). We obtain the updating period on average
by computing the time difference between “NVD Published Date” and “NVD Last Modified”. The
average is over one year, and most are between seven months to two years, which means that it
will last a long time period to continually update the CVE descriptions in practice.

Unlike the previously trained model used in RQ1, we retrain the model by using the historical
dataset but removing the augmented CVEs in the NVD database. After that, we take the previous
version of the CVE descriptions that have not been augmented by NVD maintainers as the inputs
and use the retained model to predict the missing key aspects for them. Finally, we compare the
prediction results with the collected augmented data. Note that, we use the following model config-
urations: separate CVE aspects in the original order as input, CVE-specific word embeddings, and
early-fusion architecture. We also experiment six different network designs: 1-L CNN, 2-L CNN,
1-L BiLSTM, 2-L BiLSTM, 1-L BiLSTM with attention, and 2-L BiLSTM with attention.

4.5.3 Results. As shown in Table 14, the experimental results show that the best performance
model is still 1-layer CNN, which is consistent with the result in RQ1. Compared with the predic-
tion results of 1-L CNN F1 in RQ1, the results of the key aspects prediction in RQ3 drop by 7.6%,
6.2%, 4.9%, and 14.1%, respectively, in the vulnerability type, root cause, attack vector, and attacker

type. For the prediction of vulnerability type and attacker type, the decline is relatively serious,
while for the root cause and attack vector, the decline is relatively moderate. We further explore
the decline reasons by analyzing the real cases. The augmented descriptions by NVD are usually
updated with multiple key aspects at once, many descriptions of aspects will be added or fixed
in the update, which means that the lack of information is more serious than other data in the
historical CVE dataset. Another reason is that the frequency of similar CVEs is relatively lower
than that of the other CVEs in the historical dataset, which means that the category distribution

4The “MODIFIED” version refers to the latest version of vulnerability description that has been updated, and the corre-

sponding “ANALYSIS” version means the previous version of the current modified version.
5https://nvd.nist.gov/vuln/detail/CVE-2007-4324 and https://nvd.nist.gov/vuln/detail/CVE-2015-8768.
6https://nvd.nist.gov/vuln/detail/CVE-2008-0234#vulnCurrentDescriptionTitle.
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Table 14. Prediction Performance on Augmented CVEs in NVD

Vul-Type Root Cause Attack Vector Attacker Type

Pre

1-L CNN 0.872 0.735 0.637 0.835
2-L CNN 0.826 0.702 0.609 0.812

1-L BiLSTM 0.846 0.713 0.628 0.820
2-L BiLSTM 0.846 0.711 0.628 0.823

1-L BiLSTM+Attention 0.856 0.730 0.632 0.828
2-L BiLSTM+Attention 0.851 0.732 0.630 0.823

Re

1-L CNN 0.876 0.741 0.683 0.694
2-L CNN 0.845 0.703 0.671 0.673

1-L BiLSTM 0.840 0.721 0.671 0.682
2-L BiLSTM 0.843 0.722 0.671 0.687

1-L BiLSTM+Attention 0.846 0.738 0.675 0.687
2-L BiLSTM+Attention 0.859 0.738 0.683 0.690

F1

1-L CNN 0.870 0.726 0.657 0.748
2-L CNN 0.831 0.689 0.635 0.716

1-L BiLSTM 0.834 0.711 0.646 0.735
2-L BiLSTM 0.837 0.710 0.646 0.739

1-L BiLSTM+Attention 0.850 0.722 0.651 0.741
2-L BiLSTM+Attention 0.851 0.723 0.655 0.743

of these key aspects are different from historical dataset. Taking all of these factors together, the
performance is acceptable. Our approach is still fairly effective in predicting the key aspects of
NVD that will be added manually.

Answer to RQ4. The performance of our approach is slightly affected by the multiple missing
aspects of CVEs in the ground-truth dataset, while the practicability of PMA in predicting these
four aspects (i.e., vulnerability type, root cause, attack vector, attacker type) are satisfactory in
real scenario.

4.6 Prediction on Severity Level of Vulnerabilities (RQ5)

4.6.1 Motivation. Currently, there are many researches analyzing security vulnerabilities based
on the descriptions [6, 11, 15, 23], such as predicting vulnerability severity level [23], constructing
security knowledge graphs [61]. These studies heavily rely on the information contained in the
vulnerability descriptions. To investigate how our approach contributes to such applications based
on the descriptions of CVEs, we choose one of applications to demonstrate the usefulness of PMA

in downstream applications.
CVSS is a specialized system for assessing the severity of vulnerabilities and assigning a score to

it. CVSS classifies vulnerabilities into four levels according to their scores: Low (0.1–3.9), Medium
(4.0–6.9), High (7.0–8.9), and Critical (9.0–10). Han et al. [23] have done the work of predicting
the severity level of vulnerabilities, and they have achieved relatively good results. But their work
is poor at predicting threshold scores (i.e., scores close to the severity level boundaries), as they
mentioned in their paper. For example, vulnerabilities with a severity score of 6.8 (Low) are often
predicted to be High (7.0–8.9). The CVSS vulnerability score relies on the basic information of the
vulnerability, and its base score metrics for vulnerabilities consist of the following parts: attack vec-
tor, attack complexity, privileges required, user interaction, scope, confidentiality impact, integrity
impact, and availability impact. In this RQ, we aim to investigate the impact of missing key aspects
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Table 15. Prediction Performance on Vulnerability Severity Level

All data PMA with all data Threshold data PMA with threshold data

Pre 0.801 0.835 0.608 0.657

Re 0.800 0.837 0.534 0.574
F1 0.801 0.836 0.564 0.617

of vulnerabilities on vulnerability severity level prediction. This study has two purposes: (1) First,
we want to determine the impact (if any) of our work on vulnerability severity level prediction;
(2) Second, we want to demonstrate the usefulness of vulnerability information augmentation by
our method from in a downstream application.

4.6.2 Approach. We use historical CVE descriptions as the training dataset, and 1-layer CNN
as the neural network model. First, we use the original CVE description training model to pre-
dict severity levels and calculate precision, recall, and F1 score. Next, we use PMA to predict the
missing aspects of the vulnerability in this dataset and complete them into the corresponding de-
scriptions. We use these completed data to retrain the model, predict vulnerability severity levels
and evaluate performance. We set the threshold scores to 3.7∼4.2, 6.7∼7.2, and 8.7∼9.2. Then we se-
lect 5,000 vulnerability descriptions with threshold scores from the historical data set and extracted
key aspects of them as test dataset and reconstruct the training dataset. Among them, 21% of the
data with scores between 3.7 and 4.2, 54% of the data with scores between 6.7 and 7.2, and the rest
of the data with scores between 8.7 and 9.2. We repeat the previous operation with those datasets.

4.6.3 Results. Table 15 presents the experimental results. It can be seen from the table that
after the completion of vulnerability descriptions, the performance of vulnerability severity level
prediction has been improved. In predicting the severity levels of all historical CVEs, the use of
PMA to complete the missing key aspects of the vulnerability led to a 3.5% improvement in F1, and
in the experiment that predicted the threshold, it improved by 5.3%. Most of these parts relate to
the six key aspects of the vulnerability descriptions. Our work can help to complete and calculate
the information required by CVSS, so as to calculate the corresponding vulnerability severity score
more accurately and help us classify the vulnerability severity level more accurately, especially for
the threshold scores.

Answer to RQ5. Our method (PMA) can overall improve the performance of predicting vul-
nerability severity level, and has a relatively better improvement in the prediction of threshold
scores that demand sufficient vulnerability aspect information.

5 DISCUSSION AND THREATS TO VALIDITY

5.1 Discussion

Security vulnerability has been a research focus of many security researchers. This situation has
promoted the emergence of many vulnerability databases, such as CVE, NVD. As researchers
deepen their understanding of vulnerabilities, the vulnerability reports in these vulnerability
databases will also be continuously updated and revised. Since our method converts the augmen-
tation work of key aspects of vulnerabilities into classification work, it aims to predict the labels
of key aspects of vulnerabilities. In this case, our method is not a substitute for professional work-
ers, it can locate vulnerability aspects for human analysts and help them fill out new vulnerability
reports and update vulnerability reports.

We have proved that PMA has good performance in terms of description augmentation, but
there are still some limitations: (1) Each aspect of vulnerabilities has many categories. Among
them, there are some extremely uncommon attack methods and root causes that we cannot classify.
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We summarize these categories as “others”, which can only tell people that certain key aspects
belong to these categories and cannot be accurately predicted; (2) PMA cannot match all aspects,
because the categories of neural network classifiers are limited; (3) Note that, our approach cannot
be used to replace experts, but to assist and expedite their analysis. Our goal is to recommend
missing information to experts. Ultimately, it is up to the experts to decide how to augment and
maintain the vulnerability descriptions.

When a security vulnerability is discovered, the impact is usually the first thing to be confirmed,
but some aspects (e.g., root cause and attack vector) are not easy to be discovered. Although secu-
rity vulnerabilities are constantly updated and missing aspects may be fixed during the update
process, their usability is low before sufficient information is provided. A lot of studies rely on a
large number of vulnerability descriptions for analysis, such as vulnerability severity level predic-
tion, software security knowledge graph completion based on relational reasoning, which largely
rely on the information contained in the vulnerability descriptions. Currently, the vulnerability
description often contains insufficient information and may not be sufficient to resolve the prob-
lem. Our work on missing vulnerability information may be helpful to these studies that rely on
vulnerability descriptions. We have demonstrated that our method can effectively improve the per-
formance of vulnerability severity level prediction, and we believe that our method can help more
research based on vulnerability descriptions.

At present, it is a trend to leverage natural language processing (NLP) and deep learning
algorithms on the dataset of CVEs. However, there are some challenges to be addressed and some
new research directions worth further study. (1) CVE has a wealth of information resources, in-
cluding many related databases, such as the descriptions of CWE (Common Weakness Enu-

meration) [13], and CAPEC (Common Attack Pattern Enumeration and Classification) [9]. These
extended databases contain a wealth of resources, such as the skills an attacker needs and how
to prevent an attack. If the CVE can be combined with this information in a more fine-grained
way, it may be of greater value and is a new research direction in this field; (2) The databases
that record vulnerability information are not only CVE, but also SecurityFocus [51], and IBM X-
Force Exchange [28]. There are some inconsistencies in the relevant aspect information recorded
in these vulnerability databases. Therefore, it is also a problem that needs to be solved to find out
the possible errors in CVE by using the information inconsistencies in these different databases.

With the continuous development of programming languages and software architectures, vul-
nerabilities are constantly appearing and evolving, so the currently trained predictive model may
no longer meet the requirements in the future. Our model also needs to be continuously updated
with security vulnerabilities to ensure that it can work robustly under the premise of increasing
security vulnerabilities.

5.2 Threats to Validity

Internal Validity. The performance of classification model depends largely on the size and quality
of the training set. In order to make the model have good generalization ability, we extract all CVEs
with more than four aspects as datasets. At the same time, our dataset uses the latest CVE data
but eliminates the vulnerabilities with the “REJECT” label (e.g., CVE-2010-38857). In addition, the
practicability of the method also depends on the structure of the model. We discussed the design
of the model in detail in Section 4.2.

Our approach relies on the patterns of CVE descriptions, in terms of what aspects people de-
scribe in the vulnerability reports and how they describe these aspects. This assumption holds in
general because there is a common knowledge about important aspects of vulnerabilities and much

7https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-3885.
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effort has been made to standardize the description of these aspects [29, 38]. Therefore, patterns
exist in historical CVEs, which can be learned by an appropriate machine learning methods.

External Validity. Our approach currently uses a rule-based method to extract CVE aspects from
CVE descriptions. We obtain aspect extraction rules by observing about 27,000 CVEs from 1999
to 2020, and confirm the extraction accuracy of these rules. However, the development of aspect
extraction rules may suffer from human biases and errors, and the developed rules may not cover
the emerging CVE description patterns.

6 RELATED WORK

Vulnerability databases have been created to document and analyze publicly known security
vulnerabilities. For example, Common Vulnerabilities and Exposures (CVE) [39] and SecurityFo-
cus [51] are two well-known vulnerability databases. Common Weakness Enumeration (CWE)

abstract common software weaknesses of individual vulnerabilities, which are often referred to as
vulnerability type of CVEs. New software vulnerabilities have been regularly discovered and added
to the vulnerability database. For example, in about six months from November 2019 to May 2020,
5,685 new CVEs have been added to the CVE database.

The fast-growing number of vulnerabilities demand automatic methods to assist the analysis of
newly discovered vulnerabilities. Bozorgi et al. [7] trained a classifier based on various features in
vulnerability reports, such as description and time stamp, to predict the exploitability of a vulner-
ability. Han et al. [23] proposed a CNN-based classifier to predict the severity of CVEs based on
only CVE description. Gong et al. [19] developed a multi-task learning method to predict seven vul-
nerability properties according to the Common Vulnerability Scoring System [17]. Xiao et al. [56]
constructed a knowledge graph of CVEs and CWEs, and proposed a graph embedding method to
infer the relationships of software vulnerabilities and weaknesses. Binyamini et al. [5] proposed
a novel end-to-end automation framework for modeling new attack techniques from textual de-
scriptions of security vulnerabilities. Bhandari and Singh [4] used the knowledge representation
method to do descriptive logic reasoning and reasoning for the concept of network security state.
These works used complete descriptions to carry out information analysis and prediction, and did
not take into account different kinds of information in vulnerability descriptions, so it is difficult
to perform well in some fine-grained reasoning works. At the same time, these works did not take
into account the correlation between various information in the vulnerability descriptions, while
PMA leverages the correlation across different vulnerability aspects. Besides, Hemberg et al. [25]
connected attack tactics, techniques, and patterns with defense weaknesses, vulnerabilities and
affected platform configurations, and exploited multiple aspects of vulnerability information. The
advantage of this work is that it has a variety of data and supports bidirectional relational path
tracing. Anwar et al. [3] cleaned up the NVD data and constructed a more accurate data source.
Alqahtani and Rilling [2] proposed a knowledge model based on Semantic Web, which provided a
formal and semi-automatic method for unifying vulnerability information resources. Unlike these
works, our work studies the information completeness of vulnerability reports and develops a
neural network classifier for predicting the missing key aspects in the vulnerability reports.

Neural networks have been widely adopted for text classification in natural language commu-
nity [16, 31, 45]. They have also been applied to software text other than vulnerability descrip-
tions, as well as source code. For example, Xu et al. [58] developed a CNN-based siamese network
to predict duplicate questions on Stack Overflow. Chen et al. [10] developed a similar Siamese
network architecture but their goal is to support cross-lingual question retrieval. Li et al. [33] de-
veloped QDLinker based on word embeddings and CNN for answering programming questions
with software documentation. Mou et al. [40] proposed a tree-based CNN to embed source code
for classifying programs and detecting code patterns.
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Many researches have been done on predicting vulnerable or error-prone components [43, 48],
or assessing the security of a system to be attacked [52]. They use various features including
software metrics, code churn, developer activity metrics, code structure [12, 49], while our work
devote on analyzing vulnerability textual information and the correlations across different aspects
of the vulnerability descriptions.

7 CONCLUSION AND FUTURE WORK

This article studies the information completeness in the vulnerability reports. We examine six key
aspects of CVE descriptions and find different severities of information missing for the root cause,
vulnerability type, attacker type, and attack vector. We propose a machine learning approach to
augment the missing information of these four aspects in the CVE descriptions. Our approach
uses a neural network model to extract important features from aspect descriptions and capture
intrinsic correlations among different aspects. Our large-scale experiments identify the most ef-
fective model design for the prediction task. Our model can be trained effectively using historical
CVEs, and the trained model can accurately predict missing information of future CVEs. This could
alleviate the information missing issue of the vulnerability reports.
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